Skip to content
\[ \newcommand{\fg}{\mathfrak{g}} \newcommand{\f}{\mathfrak} \newcommand{\b}{\mathbb} \newcommand{\t}{\text} ~ \newcommand{\>}{\rangle} \newcommand{\<}{\Langle} ~ \newcommand{\aa}{\alpha} \newcommand{\bb}{\beta} \newcommand{\kk}{\kappa} \newcommand{\cc}{\gamma} \newcommand{\DD}{\Delta} \newcommand{\ee}{\epsilon} \]

Review: Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions

  • 2021/3/29
  • https://www.youtube.com/watch?v=m7LMRoTl0qo&ab_channel=NCTSPhysicsDivision
  • https://arxiv.org/abs/2004.10756

Supervised Learning

  • Model
  • Generalization Error
  • Kernel
    • Traslation Invariant
      • \(\kk(x,x') = \tilde{\kk}(|x-x'|)\) for some \(\tilde{\kk}\)

Feature Expansion

  • Feature Function
    • \(\varphi(v,x) : V\times X\to \b{R}\)
  • Approx \(f\) using superposition of feature functions
    • sample \(M\) feature functions
    • optimized with \(N\) data
  • Random Feature Expansion
    • data-independent (\(d\tau\))
    • data dependent (\(q^*_{\ee}(v)d\tau(v)\))
      • but this requires \(O(e^D)\) time sampling
  • Key Ingredients (QRAM, QFT, QSVT)
    • input model
      • \(d\rho(x)=q^{\rho}(x)dx\)
      • a \(\log N\)-depth binary tree embeds the input data information
        • borrow from "Quantum Recommendation Systems(2016)"
      • use \(q^\rho(x)\) embedded into a diagonal op. \(\tilde{q}\)
        • blackbox quantum state preparation(2002)
        • \(|0\> \to \sum_x \sqrt{\hat q^\rho(x)} |x\>\)
          • note that Frobenius norm of \(\sqrt{\hat{q}}\) is 1
            • important for complexity analysis
    • implementation of a Hermitian Operator
      • block encoding with QSVT
    • construction of \(\tilde\Sigma_\epsilon^{-\frac 1 2}\) (Key speedup)
      • make use of sparcity in Fourier basis
        • the kernel function is translation invariant
          • circuilar structure

Last update: 2023-09-15