Review: Quantum arithmetic with the Quantum Fourier Transform¶
Original Paper¶
- https://arxiv.org/pdf/1411.5949.pdf
Prerequisition¶
- Quantum Fourier Transform
- (Optional) Phase estimation
Short Summary¶
- Quantum Fourier Transform Based
- signed integer, non-modular integer
- controlled version gives the inner product of two data vectors
List of Techniques¶
- QFT
Conclusion¶
Arithmetic that can be implemented and its complexity.
here
is the where is the maximum number, and is the number of numbers
Name | Exact Formula | Circuit Complexity |
---|---|---|
Qudit Addition Mod D | ||
Qudit Addition | ||
Addition | ||
(Constant) Weighted Sum | ||
Multiplication | ||
Controlled Weighted Sum (Inner Product) |
Detailed Notes¶
The Quantum Fourier Transform and distributed phase encoding¶
Adder (Qudits)¶
Generalized CZ Gate¶
is the dimension of the quantum system (qudit)
Modular Addition ¶
encodes number
The phase gate introduces a phase shift that is equivalent to a modulo
Finally, the inverse QFT takes the result back into the computational basis with
\begin{equation}
\begin{split}
\frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{i\frac{2\pi (x+y) k }{d}} \ket{x}\ket{k}
\stackrel{{\scriptsize{IQFT}}2}{\longrightarrow} \frac{1}{d}\sum^{d-1} e^{i\frac{ 2 \pi (x+y) k }{d}} e^{-i\frac{ 2 \pi k l }{d}} \ket{x}\ket{l} \ = \ket{x}\ket{x+y\pmod d}.
\end{split}
\end{equation}
Adding More Integers Together (With More Quidits)¶
Non-Modular Addition¶
\begin{equation}
C!Z \ket{x}d\ket{y}=e^{i\frac{ 2 \pi x y}{2d-1}}\ket{x}d\ket{y}.
\end{equation}
- To sum
Adder (Qubit) (Draper's circuit)¶
- Consider the addition of numbers encoded in
qubits.
Draper's circuit¶
- Evolving
into - To take
into . To perform the addition, the circuit decomposes the gates to the following. These gates are controlled by the qubits that represent the number . The combined effect of all the gates is to introduce a total phase for each state ,
Non-modular adder¶
Remaining Q¶
- exact circuit
- add in fourier basis?
Mean¶
\begin{equation}
\begin{split}
{I!Q!F!T}{N+1} \left(\prod^{N} C!Z_{m,N+1}^N \right) {Q!F!T}{N+1}\ket{x_1}\ket{x_2}\ldots\ket{x_N}\ket{0}=\ \ket{x_1}\ket{x_2}\ldots\ket{x_N}\left|\frac{1}{N}\sum^{N} x_m\pmod d\right \rangle,
\end{split}
\end{equation}
- In general, the result is not an integer.
- Sol1: fixed point representation,
(Constant) Weighted Sum¶
\begin{equation}
\begin{split}
{I!Q!F!T}{N+1} \left(\prod^{N} C!Z_{m,N+1}^{\frac{1}{a_m}} \right) {Q!F!T}{N+1}\ket{x_1}\ket{x_2}\ldots\ket{x_N}\ket{0}=\ \ket{x_1}\ket{x_2}\ldots\ket{x_N}\left|\sum^{N} a_mx_m\pmod d\right \rangle,
\end{split}
\end{equation}
- In general, the result is not an integer.
- Sol1: fixed point representation,
Multiplication by a constant¶
QFT Multiplier¶
The key to compute the product
After computing the QFT of
The size of ancillary 0 can be chosen freely to avoid modular.
Controlled Weighted Sum¶
- this gives inner product!