Skip to content

Review: Quantum arithmetic with the Quantum Fourier Transform

Original Paper

  • https://arxiv.org/pdf/1411.5949.pdf

Prerequisition

  • Quantum Fourier Transform
  • (Optional) Phase estimation

Short Summary

  • Quantum Fourier Transform Based
    • +,×
      • signed integer, non-modular integer
    • axx
      • controlled version gives the inner product of two data vectors
  • |x|yQFT|x|ϕ(y)CZ|x|ϕ(x+y)QFT1|x|x+y

List of Techniques

  • QFT

Conclusion

Arithmetic that can be implemented and its complexity.

here n is the logM where M is the maximum number, and N is the number of numbers

Name Exact Formula Circuit Complexity
Qudit Addition Mod D |x+y(modd)d O(n2)
Qudit Addition |x+yd O(n2)
Addition |x+y O(n2)
(Constant) Weighted Sum |m=1Namxm O(Nn2)
Multiplication |ab O(n3)
Controlled Weighted Sum (Inner Product) |m=1Namxm O(Nn3)

Detailed Notes

The Quantum Fourier Transform and distributed phase encoding

  • QFT|x=1dk=0d1ei2πxkd|k
  • IQFT|k=1dx=0d1ei2πxkd|x

Adder (Qudits)

Generalized CZ Gate

  • CZF|x|y=ei2πFdxy
    • d is the dimension of the quantum system (qudit)

Modular Addition |x+y(modd)

QFT2CZ12QFT2|x|y=|x|x+y(modd)

encodes number y into the phase basis \begin{equation} \ket{x}\ket{y} \stackrel{{\scriptsize{QFT}}2}{\longrightarrow} \frac{1}{\sqrt{d}} \sum^{d-1} e^{i\frac{ 2 \pi y k }{d}}\ket{x}\ket{k} \end{equation}

The phase gate introduces a phase shift that is equivalent to a modulo d addition in that basis 1dk=0d1ei2πykd|x|kCZ1dk=0d1ei2πykdei2πxkd|x|k.

Finally, the inverse QFT takes the result back into the computational basis with \begin{equation} \begin{split} \frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} e^{i\frac{2\pi (x+y) k }{d}} \ket{x}\ket{k} \stackrel{{\scriptsize{IQFT}}2}{\longrightarrow} \frac{1}{d}\sum^{d-1} e^{i\frac{ 2 \pi (x+y) k }{d}} e^{-i\frac{ 2 \pi k l }{d}} \ket{x}\ket{l} \ = \ket{x}\ket{x+y\pmod d}.
\end{split} \end{equation}

Adding More Integers Together (With More Quidits)

IQFTNCZ1,NCZN2,NCZN1,NQFTN|x1|x2|xN1|xN=|x1|x2|xN1|x1+x2++xN(modd).

Non-Modular Addition

\begin{equation} C!Z \ket{x}d\ket{y}=e^{i\frac{ 2 \pi x y}{2d-1}}\ket{x}d\ket{y}. \end{equation} - To sum N numbers, d=NdN+1 is required - Signed addition for numbers up to d/2 - positive x<d/2 into states |x - negative numbers x into states |dx - negative numbers are associated to negative phases


Adder (Qubit) (Draper's circuit)

  • Consider the addition of numbers encoded in n qubits. a=a12n1+a22n2++an20 |a|a1|a2|an

Draper's circuit

  • Evolving |a into |ϕ(a) |ϕ(a)=Q!F!T|a=1Nk=0N1ei2πakN|k,
  • To take |ϕ(a) into |ϕ(a+b). To perform the addition, the circuit decomposes the CZ gates to the following. These gates are controlled by the n qubits that represent the number b. The combined effect of all the gates is to introduce a total phase e2πibkN for each state |k, Rl=[10 0e2πi2l].

Non-modular adder

|a=|0|a1|a2|an.

Remaining Q

  • exact circuit
    • add in fourier basis?

Mean

\begin{equation} \begin{split} {I!Q!F!T}{N+1} \left(\prod^{N} C!Z_{m,N+1}^N \right) {Q!F!T}{N+1}\ket{x_1}\ket{x_2}\ldots\ket{x_N}\ket{0}=\ \ket{x_1}\ket{x_2}\ldots\ket{x_N}\left|\frac{1}{N}\sum^{N} x_m\pmod d\right \rangle, \end{split} \end{equation} - In general, the result is not an integer. - Sol1: fixed point representation, log2(Nd) qubits we recover the correct mean value - Sol2: phase estimation quantum algorithms - for d=2m, give the best possible m-bit approximation to any arbitray phase ϕ between 0 and 1 in a term ei2πϕ with a probability of, at least, 4/π2, which can be improved at the cost of a larger circuit \cite{CEM98}.


(Constant) Weighted Sum

\begin{equation} \begin{split} {I!Q!F!T}{N+1} \left(\prod^{N} C!Z_{m,N+1}^{\frac{1}{a_m}} \right) {Q!F!T}{N+1}\ket{x_1}\ket{x_2}\ldots\ket{x_N}\ket{0}=\ \ket{x_1}\ket{x_2}\ldots\ket{x_N}\left|\sum^{N} a_mx_m\pmod d\right \rangle, \end{split} \end{equation} - In general, the result is not an integer. - Sol1: fixed point representation, log2(Nd) qubits we recover the correct mean value - Sol2: phase estimation quantum algorithms - for d=2m, give the best possible m-bit approximation to any arbitray phase ϕ between 0 and 1 in a term ei2πϕ with a probability of, at least, 4/π2, which can be improved at the cost of a larger circuit \cite{CEM98}. - Also, the values in range may be bigger - Sol: Ancillary bit

Multiplication by a constant

(b12n1b22n2bn121bn20)x=m=1nbm2nmx,

QFT Multiplier

2mΣ takes |a|ϕ(0) to |a|ϕ(0+a) Apply for all m |ϕ(0+bn20a+bn121a++b22n2a+b12n1a)=|ϕ(0+ab)=|ϕ(ab).

The key to compute the product ab is to select the proper conditional phase rotation gates to implement each QFT adder block.

After computing the QFT of 0, we obtain the output state Q!F!T|0=122nk=022n1ei2π0k22n|k=|ϕ(0), where k=k122n1+k222n2++k2n20=s=12nks22ns. In order to take |ϕ(0) to |ϕ(0+bj2nja), we need to use phase rotation gates controlled by bj and by each ai, chosen so that they apply a phase rotation ei2π(ai2nibj2nj)ks22ns22n=ei2πaibjks2i+j+s2n. Therefore, we select conditional rotation gates of the form Rl=Ri+j+s2n, where i+j+s2n>0, to implement the QFT adder block controlled by bj.

The size of ancillary 0 can be chosen freely to avoid modular.


Controlled Weighted Sum

m=1Namxm - am can be in superposition - implementation |a1|x1|a2|x2|aN|xN|ϕ(0+a1x1+a2x2++aNxN). - this gives inner product!


Last update: 2023-09-15