Skip to content

Stanford CS224n NLP with DL

see also:
http://web.stanford.edu/class/cs224n/index.html#coursework
https://www.youtube.com/channel/UC_48v322owNVtORXuMeRmpA
online version:
https://hackmd.io/dceXdnaYRXutrMWnu1asrg

Part 1, 2 - Word Embeddings

Part 3 - Neural Network

Supplement Paper - Natural Language Processing (Almost) from Scratch

2020/4/12 self studies

BERT Note NLP Resources

Part 4 - Backpropagation

  • Skipped

Part 5 - Dependency Parsing

  • http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes04-dependencyparsing.pdf
  • Paper: "A Fast and Accurate Dependency Parser using Neural Networks."
  • Key:
    • Dependency Parse
      • relations of words as tree
      • more semantic?
    • The Greedy Machine
      • (sigma, beta, A)
        • stack, buffer, known arc
      • left arc, right arc, push
    • How to use NN to learn
      • POS+embedding+.. => predict action of greedy machine

Part 6, 7 - LM and RNN, Advanced RNN

Part 8 - MT, seq2seq, attension

Part 9 - Final Project Suggestion, Also good for any research

http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf

Part 10 - QA

  • http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf
  • this is the slide part
  • Task
    • SQuaD
  • History
  • SOTA
    • now is ALBERT!(my favorist BERT variant)
  • Details and advices on building and trainning model

QA lecture note addition

  • Dynamic Memory Network
    • chinese explanation
      • https://zhuanlan.zhihu.com/p/30030487
    • Q-encoding, P-encoding, Episodic Memory Module, Answer Module(GRU decode)
    • not clear about the Episodic Memory part
      • do t time, use (t-1)-th memory and Q do attention?
  • Dynamic Coattention Network
    • mentioned
    • https://zhuanlan.zhihu.com/p/27151397
    • attention to coattention?

Last update: 2023-09-15